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Short Communication

Convenient syntheses of homopropargylglycine
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Abstract: An improved classic Strecker synthesis was elaborated leading to racemic homopropargylglycine (Hpg) in 61% overall
yield, while an asymmetric Strecker reaction produced Hpg and the higher homolog 2-aminohept-6-ynoic acid in significantly
higher yields and over 80% ee. Copyright  2008 European Peptide Society and John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Methods for engineering proteins by an amino acid
reservoire beyond the canonical building blocks have
advanced substantially in the past years. These are
based on site-specific incorporation of noncanonical
amino acids into proteins via the nonsense suppression
approach [1,2] or by the residue-specific replacement of
proteinogenic amino acids with synthetic structurally
similar analogs through the use of an auxotrophic bac-
terial host starved for the natural amino acid and
supplemented with the analog [3–5]. The residue-
specific method was successfully applied for bioincorpo-
ration of various chalcogen and halogenated methionine
analogs and most recently of azidohomoalanine (Aha)
and homopropargylglycine (Hpg), respectively [6–10].
The latter methionine surrogates contain reactive site
chains, which enable specific chemical transforma-
tions by the copper catalyzed Huisgen cycloaddition
[11,12] without interferences from reactions with any
of the natural building blocks. As reduction of Aha
to 2,4-diaminobutyric acid at variable extents under
the reducing intracellular conditions has been reported
[7,13], the Hpg methionine surrogate appears to be
the most suitable candidate. Accordingly, a relatively
convenient synthesis would be highly recommend-
able.

Several syntheses of this alkyne-containing amino
acid have been reported, but their reproduction,
particularly in terms of yields, at least in our
hands proved to be difficult. Among these procedures,
alkylation of diethyl acetamidomalonate with the
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appropriate alkyl tosylate followed by decarboxylation
and deprotection of the amine function is the most
widely used, although the yields are very low (about
10%) [6]. The synthesis from 2-aminohexanoic acid
requires harsh conditions and the problem of low
yields remains unsolved [14]. An alternative route is
based on the retrosynthesis of isotryptophan [15] and
asymmetric amino acid synthesis mediated by (S)-2-
[N ′-(N-benzylprolyl)amino]benzophenone [16]. Hpg was
also produced by oxidation of 4-pentynol to the
aldehyde under Swern conditions, followed by the
Strecker reaction to 2-aminohex-5-yne-1-nitrile, which
was hydrolyzed to the racemic Hpg amide. This was
enantiomerically resolved by leucine aminopeptidase
from Pseudomonas putida to produce L-Hpg and D-Hpg
amide [17,18].

This Strecker synthesis (Scheme 1) was readily
reproduced in our hands yielding racemic Hpg in 61%
yield. While hydrolysis of the intermediate nitrile 3 with
6 M HCl was found to produce the 5-chloro contaminant
in varying amounts (1–5%), 10% aqueous H2SO4 led
to a clean conversion of 3 into DL-Hpg (4). Attempts
of enantioselective hydrolysis of 3 with recombinant
nitrilase from Arabidopsis thaliana [19,20] (EC 3.5.5.1)
failed. Therefore, the racemic amino acid obtained
by H2SO4 hydrolysis was acetylated with (Ac)2O
and the resulting Ac-DL-Hpg-OH was enantiomerically
resolved with kidney acylase I [21] to produce L-Hpg
in 69% of the theoretical 50% yield (see Supporting
Information). Chiral analysis with the Nα-(2,4-dinitro-
5-fluorophenyl)-L-alanine amide (FDAA) reagent [22] as
well as comparison with an authentic example of L-Hpg-
OH (gift from Dr Blaauw, Chiralix B.V.) confirmed the
enantiomeric purity of the compound.
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Scheme 1 Strecker synthesis of racemic Hpg.
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Scheme 2 Diastereoselective Strecker synthesis of L-Hpg.

Table 1 The effect of solvent in the reaction of TMSCN with
sulfinimines

Solvent T (°C) dea (%) Yieldb (%)

THF Room temperature 75 95
THF −50 84 99
Hex/THF(3/1) −50 14 60
Et2O −50 68 85
MeOH −50 22 95
DCM −50 44 92
AcOEt −50 83 95
CH3CN −50 20 95
toluene −50 60 58

a de value for compound 6.
b Yields of isolated compounds.

The diastereoselective Strecker reaction of enolizable
aliphatic sulfimines proved to be significantly more
efficient [23,24] and is outlined in Scheme 2. Hence
a significant effect of the solvent on the reaction of
trimethylsilyl cyanide (TMSCN) with sulfimines was
observed as shown in Table 1. The intermediate (6)
was then converted with TFA (2 equiv.) in methanol [25]
to the nitrile, which was hydrolyzed with 10% H2SO4 at
100 °C. Hpg was isolated in 51% yield with an ee of 84%
under optimal conditions. Higher enantiomeric purities
are probably prevented by the unsufficient bulkiness of
the n-butynyl side chain [24]. The superior efficiency of
this synthetic route was also confirmed by comparing
the two synthetic approaches in the preparation of the
higher homolog 2-aminohept-6-ynoic acid (ee of 87%,
see Supporting Information).

Since the enantiomeric purity of the supplied amino
acid is not required for the expression of protein
variants by residue-specific procedures because of the

Figure 1 SDS gel analysis of the marker (lane 1), of the
reaction products of Hpg1-barstar(C40A/C82A/P27A) with
5-azido-fluorescein (lane 2) and of barstar(C40A/C82A/P27A)
(lane 3); (A) Coomassie stain and (B) fluorescence.

enantiospecificity of the translational machinery, the
Hpg obtained by this procedure can directly be applied.
When required, acetylation followed by enantiomeric
resolution with acylase I [21] yields the desired L-Hpg
(see preceding text).

Expression of Hpg-containing proteins using its
racemic mixture, the L-enriched preparation, or the
acetylated derivatives was studied using a pseudo-
wt barstar mutant as model protein [26]. Engi-
neered barstar (C40A/C82A/P27A) is a small bacterial
ribonuclease inhibitor [27], which contains only one
Met residue at the N-terminal position; this is not post-
translationally processed by the Met-aminopeptidase
because of the presence of a Lys residue in position
2 [28,29]. The protein is expressed in form of inclu-
sion bodies, but can be efficiently refolded [27]. Using
the Met-auxotropic strain B834(DE3), we were able to
confirm the results of Tirrell et al. [10,30]; indeed Hpg is
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very efficiently incorporated into proteins, in the present
case into the pseudo-wt barstar mutant. High expres-
sion levels were observed by comparing SDS gels of
the lysates of parent barstar and the Met/Hpg-barstar
variant. Quantitative replacement of Met with Hpg
was confirmed by liquid chromatography-mass spectro-
metry (LC-MS) (expected mass for the parent barstar
10 252 and for the Hpg-variant 10 230; found: 10 230).
Its conversion to a fluorescent derivative was readily
achieved by reaction with 5-azido-fluorescein in the
presence of Cu(I) as catalyst (Figure 1).

Supporting Information

Supporting information may be found in the online version of

this article.
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